System Requirements Dataset: AIモデルとデータセットの探求

AIモデルの性能評価や、新しいアルゴリズム(例えば以前取り上げたSVG: Support Vector Generationなど)の実験において、適切なデータセットの選定は極めて重要です。今回は、私がソフトウェアエンジニアリング領域の自然言語処理(NLP)タスクでベンチマークとして愛用している「PROMISE Dataset」について、その構造とAIモデルでの活用実験の経験を交えて紹介します。 PROMISE Datasetとは 私がよく利用しているのは、Software-Requirements-Classification リポジトリに含まれている PROMISE.CSV です。 元々は PROMISE Software Engineering Repository で公開されていたもので、ソフトウェア要件定義書のテキストデータと、それが「機能要件」か「非機能要件」か、さらに細かい分類ラベルが付与されたデータセットです。 データの構造とクラス定義 このデータセットは主に以下の構成になっています。 Project ID: プロジェクトの識別子 Requirement Text: 要件のテキスト(例: “The system shall refresh the display every 60 seconds.") Class: 要件の分類クラス クラス分類は以下の4つが主要なラベルとして使用されています。これらは要件エンジニアリングにおける古典的な分類に基づいています。 F (Functional Requirement): 機能要件。システムが「何を」するか。 PE (Performance): 性能要件。非機能要件の一種。 LF (Look-and-Feel): 外観・操作感。UI/UXに関わる非機能要件。 US (Usability): 使用性。使いやすさに関わる非機能要件。 graph TD Req[Software Requirement] Req --> F[Functional (F)] Req --> NF[Non-Functional] NF --> PE[Performance (PE)] NF --> LF[Look-and-Feel (LF)] NF --> US[Usability (US)] NF --> Other[Other NFRs...] AIモデルによる実験:LLM vs SVG 私はこのデータセットを用いて、いくつかのAIモデルのアプローチを試みてきました。 ...

12月 22, 2025 · 1 分 · 157 文字 · gorn