Hugging Face Transformersを使ってネガポジを判定するモデルを作ってみました。
query title label negaposi この映画は本当に面白い 0 みたいな形で教師を作り、それを投入して学習させました。 東北大学の日本語 BERT モデルを事前学習モデルとし、 それをSequence Classificationさせました。
モデリング自体は、Google Colaboratoryを用いて実行しました。
学習 !pip install transformers[ja]==4.3.3 torch==1.9 sentencepiece==0.1.91 from google.colab import drive import pandas as pd from sklearn.model_selection import train_test_split from transformers import BertJapaneseTokenizer, BertForSequenceClassification, BertForMaskedLM, pipeline, Trainer, TrainingArguments import torch drive.mount('/content/drive') training_data = pd.read_csv('/content/drive/MyDrive/Texts/negaposi-sentence.csv') training_data.head() print(len(training_data["query"].unique())) training_data[["title", "label"]].groupby("label").count() train_queries, val_queries, train_docs, val_docs, train_labels, val_labels = train_test_split( training_data["query"].tolist(), training_data["title"].tolist(), training_data["label"].tolist(), test_size=.5 ) model_name = 'cl-tohoku/bert-base-japanese-whole-word-masking' tokenizer = BertJapaneseTokenizer.from_pretrained(model_name) train_encodings = tokenizer(train_queries, train_docs, truncation=True, padding='max_length', max_length=128) val_encodings = tokenizer(val_queries, val_docs, truncation=True, padding='max_length', max_length=128) model_name = 'cl-tohoku/bert-base-japanese-whole-word-masking' tokenizer = BertJapaneseTokenizer.from_pretrained(model_name) train_encodings = tokenizer(train_queries, train_docs, truncation=True, padding='max_length', max_length=128) val_encodings = tokenizer(val_queries, val_docs, truncation=True, padding='max_length', max_length=128) model = BertForSequenceClassification.from_pretrained(model_name, num_labels = 2) for param in model.base_model.parameters(): param.requires_grad = False training_args = TrainingArguments( logging_steps=10, output_dir='models', evaluation_strategy="epoch", num_train_epochs=2000, per_device_train_batch_size=16, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, save_total_limit=1, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) trainer.train() trainer.save_model(output_dir='/content/drive/MyDrive/Models/sentiment-mining4') 推論 !pip install transformers[ja]==4.3.3 torch==1.9 sentencepiece==0.1.91 from google.colab import drive import pandas as pd from sklearn.model_selection import train_test_split from transformers import BertJapaneseTokenizer, BertForSequenceClassification, BertForMaskedLM, pipeline, Trainer, TrainingArguments import torch drive.mount('/content/drive') model_name = 'cl-tohoku/bert-base-japanese-whole-word-masking' tokenizer = BertJapaneseTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained('/content/drive/MyDrive/Models/sentiment-mining4') nlp = pipeline("sentiment-analysis",model=model,tokenizer=tokenizer) nlp("この本は興味深い") nlp(“この本は興味深い”)
...